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The effect of linear filters on lunatic time series 
with structural change 

Abstract 

Quite often, when parametric models are tested for structural change, they are fitted to 
filtered series instead of raw data. Many filters, like those associated with the X-11 
seasonal adjustment program, have smoothing properties. Hence, they have a tendency 
to disguise structural instability. The paper analyzes, both theoreticatly and via Monte 
Carlo simulations, the effect of linear filtering on the statistical properties of several tests 
involving structural change. Historical series of economic activity covering the Great 
Depression are used to study and illustrate the sensitivity of some tests to the application 
of seasonal adjustment filters. 

Key words: Unit roots; Structural change; Asymptotic bias; Seasonal adjustment; Census 
X-l 1 filter 
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1. Introduction 

The analysis of structural change has occupied an important place in econo- 
metrics to assess the adequacy of particular models and to characterize the 
temporal behavior of economic time series. Typically, a parametric model is not 
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fitted to raw data but instead to filtered series, such as seasonally adjusted 
data. As these filters entail smoothing of data, they may conceal a structural 
change in the unadjusted Data Generating Process (DGP). The widely used 
Census X-l 1 seasonal adjustment program, for instance, leaves a constant and 
linear trend unaffected, as noted in Ghysels and Perron (1993) but has no such 
invariance property with respect to breaking trends and level shifts. This 
observation, discussed in Section 2, makes seasonal adjustment with X-l 1, not 
an innocuous operation with regard to tests involving aspects of structural 
instability. 

The paper analyzes, both theoretically and via simulations, the effect of 
linear filtering on the statistical properties of various classes of tests in the 
presence of structural change. While our discussion focuses on a general class 
of two-sided linear filters, satisfying certain regularity conditions, specific 
attention is given to the linear approximation of the X-11 procedure. Three 
classes of tests are considered, namely, (1) tests for a unit root allowing for the 
presence of a change in the trend function, as discussed in Perron (1989, 1994) 
Banerjee, Lumsdaine, and Stock (1992) Zivot and Andrews (1992) and others, 
(2) tests for changes in a polynomial trend function for a dynamic time series 
model, proposed by Gardner (1969) MacNeill(1978), and Perron (1991b), and 
(3) tests for parameter instability with unknown change point, as discussed by 
Andrews (1993). 

A general theoretical treatment of filtering effects on the asymptotic proper- 
ties of the tests, particularly those belonging to the second and third classes, is 
not presented. Certain simplifications are made to obtain tractable analytical 
results. For instance, in some developments it is assumed that the DGP is 
a simple level shift model without seasonals. While there is no point in 
seasonally adjusting such series, one can interpret our analysis as focusing on 
a particular component of interest which is part of a more complex time series. 
Monte Carlo simulations complement our theoretical findings and show that 
the qualitative effects uncovered by the asymptotic results extend to more 
general models. 

The outline of the paper is as follows. Section 2 presents a preliminary 
analysis of the effects caused by seasonal adjustment procedures on purely 
deterministic components when structural breaks are present. Section 3 dis- 
cusses in more detail the models and statistics involved, while Section 4 elabor- 
ates on the large sample behavior of tests with filtered data. On the other hand, 
Section 5 reports simulation experiments which allow us to better assess these 
effects in small samples and extends some of the large sample results to more 
complex time series models. Finally, Section 6 concludes with empirical exam- 
ples. Historical series covering the Great Depression are used to illustrate the 
adverse effects seasonal adjustment filters may have on tests involving structural 
changes. 
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2. Filtering and breaking trends 

For the purpose of motivating the discussion, let us consider two purely 
deterministic time series, namely: 

y, = /l + pt + ODUt, (2.1) 

y, = p + Pt + BDU, + yDT,*, (2.2) 

where DU, = 1, DT: = t - Tb if t > Tb and 0 otherwise, with Tb representing 
a breakpoint. In (2.1), a level shift is present in the DGP with intercept p 
for t < Tb and p + 0 thereafter. In (2.2), a change in both the intercept and 
the slope occurs after T,. Let us consider now the effect of ‘seasonally adjusting’ 
these processes. Of course, there is no point in seasonally adjusting such 
series since they exhibit no seasonal behavior. Yet, as they may be a component 
of a time series which is being seasonally adjusted, it is useful to consider 
the effect of a filter like X-11 on these trend components.’ To simplify the 
discussion, we consider the linear approximation of the X-l 1 filter rather than 
the actual procedure and focus on the monthly filter denoted by vgI 1 (I,).’ It is 
a two-sided symmetric filter spanning 65 observations on each side with weights 
that add to 1.3 

The ‘seasonally adjusted’ series yy = v$!~~(L)~, are plotted in Figs. la and lb 
which contain the original series (panel A) as well as their filtered counterparts 
(panel B). For purpose of comparison, panel C presents a graph of y, - yy in 
both cases. The first example, appearing in Fig. la, is one where a level shift 
occurs at T, = 150 and the sample size T is 300 (though not the entire sample is 
plotted on the graphs). To simplify the presentation, we set B = 0 in (2.1) and 
choose p= - 0.5 and 6’ = 1. Hence, at t = Tb = 150, a level jump equal in 
magnitude to one occurs. Such an abrupt level shift is obviously difficult to 
smooth. Two things happen when a level shift is filtered with vgI ,(L). First, the 
magnitude of the discrete jump at t = Tb is reduced by approximately 10% (this 

’ Several researchers have proposed a set of desirable properties that any seasonal adjustment 

procedure should have (e.g., &anger, 1978; Hylleberg, 1986, Ch. 2). One of them, sometimes referred 

to as idempotency, is that adjustment filters should leave already adjusted and/or nonseasonal time 

series unaffected. In that spirit, a desirable seasonal adjustment procedure would leave Eqs. (2.1) and 

(2.2) unaffected. 

‘For a more detailed discussion of the linear approximation, see, for instance, Bell (1992) and 

Ghysels and Perron (1993). We will not repeat the details here, and the reader should refer to these 
papers. By focusing on this linear approximation, we abstract from the modus operandi of the X-l 1 

procedure in practice. At the end of this section, we briefly discuss issues which make the actual X-l 1 
procedure different from its linear filter approximation and to what extent these differences are 

relevant with respect to analyzing structural changes. 

3 The filter weights appear in Ghysels and Perron (1993, Table A.l). 
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feature is more explicit in panel C where the difference between the two, i.e., 
y, - yr, is plotted). Second, a saw-toothed pattern appears before and after the 
actual break. The pattern, in fact, looks seasonal. The source of this pattern is 
relatively easy to understand, considering the filter weights of vEri(L,). As the 
filter is two-sided, it starts picking up the break at t = Tb - 65 when the most 
extreme lead term of the linear approximation ‘hits’ Tb. Moreover, the break 
still affects yy at Tb + 65 due to the most extreme lag term. Moreover, the 
saw-toothed pattern is a consequence of the design of the filter weights. Consider 
next the case corresponding to (2.2), where the slope and the intercept 
change at time Tb. Here again, we observe the two effects of passing yt through 
vgi 1 (I,), namely, the level shift is reduced while the change in slope zig-zags 
through time. 

Before turning our attention to the test procedures, we make two observa- 
tions about the use of the linear X-11 filter. First note that the smoothing 
produced by the actual X-11 program is probably greater than that resulting 
from the application of the linear filter v:,,(L). Indeed, two features of the 
actual procedure have a smoothing effect not captured by the linear approxima- 
tion. First, the detrended series, obtained using the so-called Henderson filter, is 
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Fig. la. Level shift before and after filtering. 
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Fig. lb. Slope and level shift before and after filtering. 

resealed once outliers are detected.4 This part of the procedure replaces actual 
observations by refitted values based on a resealed and nearest neighbor 
smoothing scheme. Secondly, the Henderson filter can be replaced by a longer 
moving average with 23 terms instead of the default value of 9. In the remainder 
of this paper, we continue to work with the linear approximation, as any 
theoretical development would be difficult with any of the real-time complica- 
tions associated with the procedure. One should keep in mind though that the 
nonlinearities of the X-l 1 program not taken into account in fact exacerbate the 
undesirable effects of seasonal adjustment on procedures involving structural 
breaks. Finally, note that we consider only two-sided filters while in practice 
one-sided filters are often used when all the data required to apply the two- 
sided filters are not available. Such is the case at either end of the sample or 
whenever preliminary data releases are studied. We do not pursue any analysis of 

4 Hylleberg (1986, p. 90) provides a reasonably nontechnical description and summary of this feature 

of the X-l 1 program. Ghysels, Granger, and Siklos (1995) discuss in detail and provide simulation 

evidence about the nonlinear features of the X-l 1 program. 
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one-sided filters primarily for two reasons. First, regularity conditions required 
for a linear filter not to affect a linear trend rule out one-sided filters (see Ghysels 
and Perron, 1993). Second, there are a multitude of one-sided linear filters, in 
principle 131 for the monthly X-11 case. Choosing a specific one could only be 
justified using some arbitrary criterion. 

3. The models and statistics 

In this section, we briefly review the models and statistical procedures and, 
when necessary, extend them to a seasonal context. Three different classes of 
tests are investigated, namely, (1) tests for a unit root allowing for the presence of 
a change in the trend function, (2) tests for changes in a polynomial trend 
function for a dynamic time series, and (3) tests for general parameter instability 
with unknown change point. 

3.1. Unit root tests 

A detailed discussion of tests for a unit root allowing for the presence of 
a change in trend function appears, for instance, in Perron (1989, 1994). A first 
model is one where only a change in the intercept of the trend function is 
allowed under both the null and alternative hypotheses. The ‘innovational 
outlier’ version generalized to allow for seasonal components leads to the 
following regression to compute the relevant unit root test: 

yt = p + BDUt + j?t + 6D(Tb), + cryt-I 

+ 5 Cidy,-i + ‘ilbsdst + e,, 
i=l s=l 

(3.1) 

where D(Tb), = 1 if t = Tb + 1 and zero otherwise, and d,, is a set of S - 1 
seasonal dummies with corresponding mean shifts denoted by b,. 

Before turning to the second and third models, a brief discussion about the 
appearance of seasonal dummies in (3.1) is in order. First note that in all the 
models considered seasonal mean shifts remain fixed under both the null and the 
alternative hypotheses. This assumption avoids the complication of changing 
seasonal patterns discussed in Ghysels (1990) and Canova and Ghysels (1994). 
As all auxiliary regressions include a constant, we know from results in 
Hylleberg et al. (1990) that the asymptotic distributions of test statistics will not 
be affected. Hence, the presence of seasonal dummies in (3.1) and other regres- 
sions below does not entail any change in the asymptotic critical values to be 
used. 
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Under the second model, both a change in the intercept and a change in the 
slope of the trend function are allowed at time Tb and the appropriate regression 
is 

y, = /..t + BDU, + fit “I- yDT: + dD(T,), + sly,_ 1 

+ i Cidyt-i + s~ibsd,f + e,. 
i=l S=l 

(3.2) 

In the third model, a change in the slope of the trend function is allowed but 
both segments are joined at the break. Hence, the change is presumed to occur 
rapidly and corresponds to the ‘additive outlier model’, as discussed in Perron 
(1989). The null hypothesis of a unit root can be tested using the fo!lowing two 
regressions: 

S-l 
Yt = c1 + Pt + rDT,* + s, + 1 b,&, 

s=l 

(3.3a) 

(3.3b) 

We denote by t&, Tb, k) (i = 1,2,3) the t-statistic for LY = 1 under model i with 
a break date Tb and truncation lag parameter k. In the simulation experiments 
to be reported in Section 5, we consider both cases where Tb is assumed known 
and unknown. In the former case, the proper critical values to be used are those 
in Perron (1989) for all three models (see also Perron and Vogelsang, 1993). 
When the breakpoint is treated as unknown, we follow Zivot and Andrews 
(1992) and consider the statistics t,*(i) = min 7,EJk+2,TJrk6 7~4 6 = 1,2,3), 
whereby Tb is chosen such that the t-statistic for cx = 1 is minimized over all 
possible breakpoints. In this case, the appropriate asymptotic critical values to 
be used are those reported in Zivot and Andrews (1992) for models 1 and 2 and 
in Perron and Vogelsang (1993) for model 3. 

To select the truncation lag we consider, in both the simulations and the 
empirical applications, a data-dependent method based on a general to specific 
recursive strategy using the value of the t-statistic on the coefficient associated 
with the last lag in the estimated autoregressions.’ 

5 More specifically, the procedure selects that value of k, say k*, such that the coefficient on the last 
lag in an autoregression of order k* is significant and that the coefficient on the last lag in an 
autoregression of order greater than k* is insignificant, up to some maximum order k,,, selected 
a priori. We use a two-sided 10% test based on the asymptotic normal distribution to assess the 
significance of the last lags. See Ng and Perron (1995) for further discussion on the theoretical 
justification for this procedure and Perron and Vogelsang (1992) for simulation results in the context 
of unit root tests with breaks. 



16 E. Ghysels, P. Perron/Journal of Econometrics 70 (1996) 69-97 

3.2. Tests for changes in a polynomial trend function 

We now consider tests for structural change in a polynomial trend function. 
The basic process has three components, namely: (1) a polynomial trend func- 
tion of order p denoted N,, (2) a stationary AR(k) process denoted X,, and 
(3) a set of seasonal deterministic mean shifts. Except for the third component, 
the setup is similar to that in Gardner (1969), MacNeill (1978), and Perron 
(1991b). The process y, is then characterized as 

S-l 

Y, = N, + X, + c b,&t > 
s=l 

(3.4a) 

Nt = i Bi.tt’, 

i=O 

(3.4b) 

x, = i OCjX,_j + e,, 
j= 1 

(3.4c) 

where e, is i.i.d. N(0, a:). Under the null hypothesis, pi,, = fii for all i. Under the 
alternative, some of the pi,, change at least once over time. Again, the seasonal 
pattern is assumed to be fixed under both the null and the alternative hypo- 
theses. A one-time change in the coefficients at a given date Tb will be the 
alternative hypothesis of interest. To describe the test statistics, consider first the 
following regression estimated by OLS: 

y, = i p^i t’ + “f;’ 6sd,, k + CoijYr-j+e^pS,tr t= 1, . . ..T. (3.5) 
i=O s=l j= 1 

where we denote the estimated residuals by I?;, , to highlight the fact that they are 
obtained from a regression involving a polynomial trend of order p and a set of 
seasonal dummies. We shall denote the residuals by 2p,, f when the dummies are 
not present in the regression. The test statistic, denoted Q@-(p), is given by 

Q@(p) = T -*K2 1 (3.6) 

whereG2 = T~1~~‘=l($,)2.A similar test statistic for the nonseasonal case will 
be denoted Q&-(p) when t$, t is replaced by gp, I. The asymptotic distribution of 
this test was derived in Perron (1991b). It depends on p and is tabulated in 
MacNeill(l978) for the case where the noise component is a stationary process. 

3.3. General tests for parameter instability with unknown change point 

The last class of tests considered are special cases of the general framework 
considered in Andrews (1993). We again consider data generated by (3.4), with 
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the restriction, however, that p = 0, yielding an AR(k) nonzero mean model, 
possibly with seasonal mean shifts. The null hypothesis H,: /I,,, = &, is con- 
sidered. This corresponds to what is termed by Andrews as a ‘partial’ structural 
change test, as it does not involve testing the time invariance of the parameters 
C(j and those associated with the seasonal mean shifts. We let Tb = XT where 
71 belongs to a subset of [0, 11. We use rc E CO.15, 0.851 in the simulations and 
empirical applications. For any given value of rt, consider the regression 

Yr = POICn)C1 - D”t) + P02(7L)Dut + $J CljYr-j + ‘i’bsdst + US(n). (3.7) 
j=l s=l 

From (3.7), it is relatively straightforward to construct Wald statistics over the 
range of possible breakpoints. Namely, for n: given, 

x @IX(~) - p102(~)), (3.8) 

and compute sup, W +( xc), denoted sup W 5. The variances P, (7~) and PZ(rc), for 
bo1(n) and &(rr) respectively, are obtained from each of the subsamples and 
involve corrections for possible heteroskedasticity and autocorrelation as dis- 
cussed, for instance, in Newey and West (1987). An equivalent statistic for the 
nonseasonal case will be denoted Sup W,. The asymptotic distribution of 
sup W$f and sup WT is tabulated in Andrews (1993). Along the same lines, one 
can construct likelihood ratio tests denoted supLR; and supLR,, this time 
involving the estimation of a constrained model. 

4. Large-sample analysis 

Our aim in this section is to discuss the qualitative features of the effect of 
seasonal adjustment filters on the behavior of some test statistics in large 
samples. In particular, we want qualitative results that will enable us to draw 
some conclusions about the likely direction of the biases in terms of size or 
power. As we shall see, things get complex quite quickly and, in view of keeping 
the exposition manageable, we consider only simple models and special cases of 
the statistics described above. 

4.1. Unit root tests 

For the unit root tests, we consider as DGP a special case of model 3 with 
a change in slope in the context of a known breakpoint Tb. The tests are 
constructed without the addition of seasonal dummies and without additional 



78 E. Ghysels, P. PerronlJournal of Econometrics 70 (1996) 69-97 

lags in the autoregression (3.3b). Under these restrictions, the two-step proce- 
dure for this model reduces to 

y, = p + Bt + YDT: + Jr, (4.1) 

Y”t = a&, + e,, (4.2) 

estimated by OLS. Without loss of generality, we also set the true values 
p = fi = 0. Consequently, the DGP considered is of the form: 

y, = YDT: + Z,, (4.3) 

where Z, is the noise component. If a unit root is present, we have 
Z, = Z,_ 1 + v, where ut is a stationary ARMA process of the form 
,4(L)u, = B(L)e, with e, N i.i.d. (0, 02). For a trend-stationary process, Z, is itself 
stationary. 

We denote the seasonal adjustment filter by v(L) = C’Y,,,UiL, a two-sided 
polynomial with 2m + 1 terms. The following analysis assumes this filter satis- 
fies v(L) = v( - L) and v(1) = 1 [the last condition being necessary to justify our 
elimination of the intercept and the slope in (4.3)]. This framework covers the 
case of the linear approximation to X-l 1. Let yf denote the filtered data. As is 
well-known, the normalized least-squares estimator of o! in (4.2) using filtered 
data is given by T(@ - 1) = T -‘CT,,y”,f(y”,f - j$_I)/T-2~~=2(j$1)2. Our 
aim is to study the limiting distribution of T(a*’ - 1) under the null hypothesis 
of a unit root and the probability limit of Bs when considering the alternative 
hypothesis of a stationary noise component. The filtered data is given by 

y; = v(L)y, = yv(L)DT: + v(L)Z,. (4.4) 

Note first that the unit root property is preserved by the application of the filter. 
Indeed, if a unit root is present, v(L)Z, = Zi = Z:‘_ 1 + v(L)v, = Zsml + Q 
where v], = v(L)A(L)-IB(L) Since v(L) does not contain a root on the unit 
circle, g, is itself a stationary process having a different variance from v, though 
an identical spectral density function at the origin. The effect of the filter on the 
trend properties of the data is such that 

v(L)DT: = 0 if t < Tb - m, 

=t-T, if t 2 Tb + m, (4.5) 

=“fmfE L+ @+I-W*.l-, if T,-m<t<T*+m. 
i=T,-m+ 1 

It is shown in the Appendix that the asymptotic distribution of T(oif - 1) is 
the same as that stated in Perron and Vogelsang (1993) for the case where the 
data is not filtered except for the fact that the nuisance parameter 6 = (0,’ - 
$)/2a,2 is now defined in terms of s,’ = limT,oo T -‘CT= 1 E($) instead of 
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s,’ = lim T_m T - 'CT= 1 Ii($) where we recall that qt = v(L)v, [note that 
0,” = lim,,, T-‘(CT=lyll)2=~~=limT-rmT-1(C~=1~1)2 since v(1) = 11. 
Since usual tests for a unit root do not depend asymptotically on nuisance 
parameters, the tests will have an identical limiting distribution under the null 
hypothesis whether the data are filtered or not. 

Consider now the limiting behavior of oil under the alternative hypothesis of 
a stationary noise component. Tedious algebra yields? 

T-'iy":j:, = T-' f&Z;_, +0,(l), (4.6) 
t=2 r=2 

T-' i(jf-,,'= T-' i(Z:‘-,)‘+o,(l). 
1=2 t=2 

Hence, the limiting bias of oil is the same as in the case where no break in the 
trend function is present. This case was analyzed in detail in Ghysels and Perron 
(1993) who showed that the probability limit of dif depends on the underlying 
process and is, in almost all cases, greater than the true first-order autocorrela- 
tion coefficient when v(L) is the X-11 filter. This last fact, which still prevails 
here, implies a loss of asymptotic power for tests of unit roots. Note that, as 
shown in Ghysels and Perron (1993) this asymptotic bias still prevails if the tests 
are based on augmented autoregressions. 

The basic reason for the fact that filtering the data in the presence of a break in 
the trend function does not add a further element of bias to the test asymp- 
totically is that, even though the filter does not leave the trend function 
unchanged, it affects it for a finite number of periods only, related to the length 
of the filter (m). An alternative asymptotic framework would let this number of 
leads and lags increase as the sample size increases. The idea here is akin to 
a continuous time asymptotic framework where the sampling interval decreases 
to zero as the sample size increases to infinity. Indeed, it is well-known that 
seasonal filters, such as the linear approximation to X-l 1, incorporate more lags 
the finer the sampling interval.7 Though we do not analyze explicitly a continu- 
ous-time approximation, such an asymptotic framework with m increasing can 
yield additional insights into the qualitative properties of the tests in the 
presence of filtering. 

To that effect, we first need to specify the framework relating the behavior 
of the filter weights as the sample size increases. We specify the sequence of 
weights: 

Tv,([Ts]/T)+v(s) as T+ 00. (4.8) 

6Using (A.2) in the Appendix and especially the fact that c3 and c4 are 0,(T-3’2) when Z, is 

stationary (as well as the fact that m is fixed as T -+ co ). 

‘The quarterly X-l 1 filter involves 27 leads and lags whereas the monthly one has 65. 
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Condition (4.8) is reasonable in the sense that it lets the weights on distant 
leads and lags decrease to zero at a fast enough rate. Let the number of lags on 
each sides of the filter be such that m/T + K as T + cc (we also specify 
Tb/T -P I). Using (4.8), we have 

T - ’ xm,pl = T - 1 i=T&m+l(ITrl + 1 - i)vTb+l-i 

b 

[Tr] - T,+m 

=T-’ c ([Tr]-Tb+m+l-i)v,+l_i 
i=l 

r-AiK 

= ;C [r - 1 + K - S] T VT(K - s) ds 

I-A+K 
=S f [r-A+K-s]v(~-s)ds 

0 

r-A 

= 1 [I-A-s]v(-s)ds. 
-K 

(4.9) 

Under this alternative asymptotic framework, we obtain a rather different 
characterization. From (A.2) in the Appendix, we can verify that the term x,,,, f is 
O,(T) and dominates all others under the alternative hypothesis of a stationary 
noise component. Hence, we deduce that 

= r3 -z ~m,t~m,t-I T -3 -1 x,i,t + o,(l). 
f=T,-m z= T,-m 

(4.10) 

Considering first the numerator of oi/, we have 

T,+m T,+m 

T-3 C 
t=T,-m 

Xm,tXm,t-1 = T-3t=~_mC~~.r-~ + VT,+~-~L-~I. 
b 

Using (4.8) and (4.9), we have the limiting results 

T,+m rl+K 

T-3 1 X&I = f (T-‘xm,pJ2dr 
t=T,-m 2-h. 

_:;:(‘i’(r - 1 - s)v( - s)ds)2dr. 
-K 

(4.11) 

Using (4.10), (4.11) and the fact that T -2~~~‘~~_m~Tb+1_f~m,t_1 = O,(l), it 
is readily seen that a^’ + 1 under the alternative asymptotic framework where 



E. Ghysefs, P. Perron/Journal of Econometrics 70 (1996) 69-97 81 

m increases to infinity as T increases. Our argument is not that this alternative 
limiting result provides a better approximation to the finite-sample distribution. 
Rather, we view the fact that df -+ 1 under the alternative hypothesis as suggest- 
ing the presence of an additional bias, caused by seasonal adjustment filters, that 
will reduce the power of the tests in finite samples. 

To summarize, our results, though obtained from a special model and test 
statistic, suggest the following features to be expected in finite samples about 
unit root tests that allow for the possibility of a break in the trend function: 
(1) seasonal adjustment filters have little effect on the size of the tests; (2) they, 
however, create a bias towards nonrejection of the unit root. This bias is caused 
by two components: the upward bias on oil that would occur without breaks (as 
analyzed in Ghysels and Perron, 1993) and a further bias caused by the 
distortionary effect of filtering on the trend function itself. 

4.2. Tests for structural change 

To keep the theoretical derivations analytically tractable again, while still 
aiming for qualitative results about distortions to size and power caused by 
filtering, we consider the simple case of a change in mean in an i.i.d. sequence 
whereby the statistic Q&(O) is applied. The data-generating process is given by 

(4.12) 

where e, - i.i.d. (0, lo*) and DU, is defined in Eq. (2.1). Under the null hypothesis, 

6 = 0. By specifying the process with change in mean S/J?, our goal is to 
provide a comparison of the local asymptotic power of the statistic constructed 
with and without filtered data. This derivation is obtained using the asymptotic 
framework whereby m increases to infinity as T increases and (4.8) is specified 
for the sequence of filter weights, 

We recall from the definition of Q&(O) that we can write Q&(O) = T-*6-* 
~~~~‘{~f=l(yj - P))‘, where ci* = T - 1 CT (y8 - 8)*. The statistic constructed 
with filtered data, Q&(O), is defined analogously with y, replaced by yf = 
v(L)y,. We first discuss the limit of the statistics under the null hypothesis. From 
MacNeill (1978), we have 

where B(s) = W(s) - JA W(s)ds is a demeaned Wiener process. It is straightfor- 
ward, using arguments similar to those in Perron (1991b), to show that 

(4.14) 
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where Ic/ = S’L,~(s)~ds = limr,, T-1C~(v(L)e,)2/a~. Comparing (4.13) and 
(4.14), we see that filtering will induce size distortions in the limit if II/ # 1. Note 
that we have the approximation $ z CZ,,,v?. For the linear approximation to 
the X-11 seasonal adjustment procedure, $ is 0.826 for the quarterly version 
while 0.785 for the monthly version. In both cases, the application of the 
seasonal adjustment filter will induce tests that are liberal (oversized) even in the 
limit (slightly more so in the monthly case). 

We now consider the local asymptotic power function of the tests. Consider 
first the case where the unfiltered series are used. From Perron (1991b, Thm. 6) 
we deduce: 

where Bza = W;r) - rW(1) - (6/a,) (1 - n)r + l(r > A)(d/a,)(r - A). To sim- 
plify, we analyze the case where 6 is ‘large’. In that case, we have the approximate 
relation 

Q&(O) zz (s2/a:)12(1 - n)‘/3. (4.15) 

We now consider the case where filtered data are used. It is shown in the 
Appendix that for large 6 we have the approximation: 

QD$(O) z (S2/o,2) 
i 

[r(L + rc) + (1 - 1 - K)]‘@. - ~)~/3 

+ [r(A + K) + (1 - ic)]2(1 - A - K)3/3 (4.16) 

+ j [T(r + 1) - (r + Il)r(J. + K) - (r + A)(1 - i - ic)12 dr , 
-_)( I 

where T(r + A) = J>?“,[Jj_-,“v( - s)ds]dj = S~,li,v( - s)ds. The relative 
asymptotic power function of Q&(O) and Q&(O) in the filtered and unfiltered 
case is given by the ratio of (4.16) to (4.15). This ratio can be evaluated using the 
following approximations: 

j=-m/s=-m 1 

i = -m + 1, . . . ,m, 

and the approximation for the integral in (4.16) 

m 
T-l C [ri-(i/T+~)r,-(i/T+/1)(1 

i= -m 

is given by 

- il - K)12. 



E. Ghysels, P. PerronlJournal of Econometrics 70 (1996) 69-97 83 

Table 1 

Relative local asymptotic power of QD$(O) and QDT(0) 

T i = 0.1 i = 0.2 I = 0.3 I = 0.4 I = 0.5 A = 0.6 I = 0.7 I = 0.8 I = 0.9 

100 Quarterly 0.857 0.932 0.969 0.991 1.008 1.025 1.046 1.084 1.215 
Monthly ~ ~ ~ _ - _ _ ~ ~ 

200 Quarterly 0.918 0.969 0.989 1.000 1.008 1.017 1.027 1.045 1.097 

Monthly 0.951 0.966 0.982 0.933 1.002 1.011 1.023 1.046 1.137 

500 Quarterly 0.968 0.989 0.997 1.002 1.005 1.008 1.012 1.020 1.040 

Monthly 0.965 0.987 0.995 1.000 1.003 1.007 1.011 1.019 1.041 

1000 Quarterly 0.985 0.995 0.999 1.001 1.003 1.004 1.007 1.010 1.020 

Monthly 0.983 0.994 0.998 1.001 1.002 1.004 1.006 1.010 1.021 

Using these approximations, we evaluated the relative asymptotic power 
function of the Q&O) and Q&(O) tests when the data were filtered using the 
linear approximation to X-11. Note that for the quarterly case m = 27, and 
for the monthly case m = 65. We set K = m/T and considered a range of T 

between 100 and 1,000 and 1 = 0.1, 0.2, . . ,0.9. The results are presented in 
Table 1. 

Several interesting qualitative features emerge from these results. The 
most important being the fact that the relative efficiency of the test is lower 
with filtered data than with unfiltered data when i is small, i.e., when the break 
occurs early in the sample. The reverse is true when 1 is greater than 0.5. With 
i around 0.5, the two versions are approximately as powerful. These qualitative 
results are little affected by different values of T. Finally, filtering the data 
induces a greater power loss, in general, with the quarterly filter compared to the 
monthly filter. In general, however, the power losses or gains are relatively small, 
within + 5%. 

Our results, though obtained from a simple model and test statistic, show 
important qualitative effects that are likely to extend to other models and tests. 
They show that size can be affected (overly liberal tests) as well as power. Unlike 
tests for unit roots, the effect on power can go either way, depending on the 
position of the break. 

5. A simulation study of the finite-sample behavior 

We now turn our attention to the finite-sample behavior of the various test 
statistics presented in Section 3. We first describe the Monte Carlo design 
followed by the results for each of the three classes of tests. 
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5.1. The Monte Carlo design 

We focused exclusively on the monthly X-l 1 filter and studied that statistical 
properties of tests in samples of 100 and 200 filtered observations, hence a ten- to 
twenty-year span on monthly observations. In effect, data sets of 400 observa- 
tions were drawn in each Monte Carlo iteration so that the two-sided X-l 1 filter 
could be applied. A sample with 200 filtered observations started with the 1Olst 
observation after the entire series of length 400 is adjusted with the v,“_ 11(L) 
filter. Whenever seasonality was present in the DGP, the following monthly 
pattern was chosen: bI = - 0.05, b2 = - 0.03, b3 = 0.03, b4 = 0.05, b5 = 0.05, 
b6 = 0.02, b7 = - 0.05, b8 = - 0.02, b9 = 0.02, b,,, = 0.02, and bIl = 0.02. 
Hence, the dummy shifts sum to zero and exhibit what can be viewed as a typical 
monthly seasonal pattern in economic time series (assuming bI corresponds to 
the second month). 

For each model, we considered two scenarios regarding the treatment of 
a seasonal component in the DGP. One scenario consisted of generating data 
without a seasonal pattern. The other included seasonal dummies, with the 
mean shift values described above. With no seasonality in the data, we construc- 
ted the tests using regressions without seasonal dummies and compared their 
properties with and without filtering. Here, as seasonality is absent, we isolate 
the effect of linear filtering with YE, i(L) on the statistical properties of the 
different tests. In the second scenario, when the DGP contains seasonal patterns, 
filtering serves as an attempt to remove the seasonal mean shifts. 

5.2. Unit root tests allowing for a breaking trend 

We focus here on models 1 (a change in intercept) and 3 (a change in slope). 
Model 2 is not reported as the results were similar to those of model 3. The 
DGP’s considered imposed an AR(l) structure so that, under the null hypothe- 
sis of a unit root, the process is a pure random walk. Under the alternative 
hypothesis, the noise component, denoted &L)e,, is an AR(l) such that 
4(L) = (1 - CL)- ‘. To analyze power, we set a = 0.85. Moreover, it was as- 
sumed that p = /I = 0 in Eqs. (3.1) and (3.3a). With seasonality in the DGP, 
three testing strategies are considered. The first consists of applying the tests to 
filtered series, while the second involves unfiltered data and adding seasonal 
dummies to the regressions used to calculate the tests. Finally, the third strategy 
consists also of using the unfiltered data and constructing the tests using 
standard augmented regressions without added seasonal dummies. The value of 
k,,, for the data-dependent method to select the truncation lag was set equal to 
4 except for the latter configuration, where it is 12. We report results for 
T = 200. In generating the data, the breakpoint Tb was set at half-sample, i.e., 
Tb = 100 (or the 200th observation generated). All simulations were done with 
1000 replications. 
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Table 2 
Size and power properties of the unit root tests against breaking trend alternatives, filtered and 
unfiltered series; t;(i, Tbr k) statistics, i = 1,3, nominal size 5%; sample size T = 200, Tb midsample 

DGP without seasonal dummies DGP with seasonal dummies 

Unfiltered Filtered Unfiltered Filtered Unfiltered 

(km,, = 12) 

Size Power Size Power Size Power Size Power Size Power 

Model I ~ Known breakpoint 

6 = 0.50 0.058 0.621 0.053 0.583 0.059 0.601 0.061 0.720 0.048 0.761 
6 = 1.00 0.060 0.783 0.048 0.642 0.054 0.799 0.058 0.812 0.045 0.882 

Model I - Unknown breakpoint 

6 = 0.50 0.050 0.531 0.038 0.354 0.048 0.585 0.056 0.382 0.049 0.698 
6 = 1.00 0.052 0.573 0.041 0.418 0.053 0.773 0.054 0.611 0.051 0.833 

Model 3 ~ Known breakpoint 

y = 0.05 0.052 0.601 0.052 0.578 0.052 0.446 0.052 0.401 0.052 0.411 
y = 0.10 0.050 0.777 0.052 0.65 1 0.051 0.513 0.053 0.492 0.049 0.518 

Model 3 ~ Unknown breakpoint 

y = 0.05 0.049 0.333 0.041 0.282 0.041 0.379 0.045 0.361 0.048 0.378 
y = 0.10 0.042 0.411 0.041 0.351 0.051 0.448 0.047 0.489 0.049 0.452 

Table 2 reports size and power of the unit root tests for models 1 and 3. In the 
first model (3.1), the parameters 6 and 0 were chosen such that 6 = e/(1 - c(), 
hence for any value of 6, we have 6’ = 6(1 - CC). We selected 6 = 0.5 and 1.0, 
measuring two different magnitudes of discrete jumps at time Tb. A level shift 
equal to 0.5 is small considering that its magnitude is half the standard error of 
the disturbance term. For model 3, we set y = 0.05 and 0.10. The parameter 
y determines a change in slope rather than a jump, hence the different order of 
magnitude. The top two panels of Table 2 display the size and power for tests 
related to model 1 under different configurations with the breakpoint assumed 
known or unknown and where the DGP lacks or exhibits seasonal mean shifts. 
The nominal and empirical sizes of the t;(l, Tb, k) statistics appear very close, 
indicating that size distortions are at most minor. This observation also applies 
to test statistics pertaining to model 3 (the bottom panels of Table 2), and, hence, 
we focus our attention exclusively on the power properties of the various tests. 
The fact that no size distortions occur in small samples agrees with the asymp- 
totic results discussed in Section 4.1. 

For the power properties, let us first turn our attention to cases where the 
DGP does not exhibit seasonal mean shifts. As the asymptotic development 
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indicated, it clearly appears from the simulation experiments that tests are less 
powerful, irrespective of the assumption about knowing the breakpoint, whenever 
data series are passed through the linear X-11 filter. When the DGP exhibits 
seasonal mean shifts, this finding also generally holds with some exceptions when 
one compares the filtered and unfiltered simulation scenarios [the column labeled 
unfiltered (k,,, = 12) will be discussed later]. Indeed, for model 1 with a known 
breakpoint, it appears from Table 2 that tests applied to unfiltered data yield 
slightly better power, sometimes by a margin exceeding lo%.* 

A third scenario for dealing with seasonality in the DGP consists of using 
unfiltered data combined with setting k,,, = 12 (since simulated data represent 
monthly series) but without including seasonal dummies in the regression. As 
the series are unfiltered, we no longer have the negative effect of X-11 on the 
power of tests. Moreover, as there are no seasonal dummies but only an 
autoregressive expansion of at most length 12, we may clearly expect to gain 
power relative to the first scenario which almost always involves more re- 
gressors. The power properties of the second scenario, i.e., filtering and k,,, = 4 
versus the third one are a priori not easy to assess because the former usually 
involves less regressors.’ Regarding model 1, the third scenario is the most 
powerful. Overall, the results for model 3 are quite similar, except for the fact 
that the three different scenarios in the seasonal case do not yield such marked 
differences in power. 

Perhaps the most important conclusion to retain from these simulations is 
that introducing seasonal dummies in regressions, sometimes a natural thing to 
do with unadjusted data, does not seem to be as good compared to filtering 
either via AR lag augmentation or via a procedure like X-11. The difference 
between the latter two does not seem to be such a clear-cut case, though the 
third scenario seems to have an edge over standard seasonal adjustment filter- 
ing. It is also worth recalling at this point the fact that the actual implementation 
of the X-l 1 procedure entails most likely more smoothing than the linear filter 
induces. Taking this into account makes the edge of the third scenario all the 
more important in most practical circumstances. 

5.3. Testsfor changes in a polynomial trendfunction andparameter instability with 

unknown change point 

We now study the finite-sample properties of the tests presented in Sections 
3.2 and 3.3. Because the asymptotic derivations in Section 4.2 were restricted to 

s There is an easy explanation for this. Two opposite effects on the overall power properties in finite 

samples must be taken into account. On the one hand, we know that filtering will reduce power; on 

the other hand, reducing the number of regressors implies increased power. Which of the two effects 

will dominate depends on the specific situation. 

9Although, strictly speaking, one should correct for degrees of freedom lost due to filtering. 
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the analytically tractable simple case of the Q&(O) statistic, we focus first on 
a Monte Carlo design tailored towards the theoretical developments. There- 

after, we broaden the scope of the analysis by investigating cases which were not 
covered by the analytic local asymptotic developments. Moreover, we investi- 
gate, even in the simple case, not only the Q&(O) statistic but also the QD;, 
sup WT, supLRT, sup W;, and supLRc statistics as well. To conduct our first 

experiments, a data series of normally distributed N(0, 1) white noise was 
generated under the null hypothesis and a white noise process around a level 

shift under the alternative hypothesis. Such a design suits all classes of tests. 
Similar to the previous section, we distinguish data with and without seasonal 
means. Three scenarios were again considered when seasonal mean shifts were 

present in the data. Table 3 summarizes the results. The values of 6 are the same 
as in Table 2. All tests now apply to cases where the breakpoint is assumed 
unknown and T,, = 50 with a sample size of 100. 

We observe in Table 3 that in some cases minor size distortions appear due to 
filtering. This finding is in line with the asymptotic size distortions found in 

Section 4.2. We also observe that filtering may yield more powerful tests, yet 
taking into account the size distortions [see, for instance, QDr(O), filtered and 

unfiltered with seasonals] such increases in power are not very meaningful. For 
the Qo statistic and the supW and supLR statistics, we also obtain a power loss 

due to filtering, though the loss is not as significant as in Table 2. It should also 
be observed that, when seasonals are present, it is advisable to include seasonal 
dummies instead of long lag expansions like k = 12. The use of the latter greatly 
reduces the power of the QDr(0) statistics compared to Q@(O), for instance. It 

should also be noted that the supW and supLR appear to be slightly less 
powerful than the tests for a change in a polynomial trend function. This may 
not be surprising, because the Monte Carlo design is specifically tailored to 
investigate QD-type statistics. Overall, we may conclude that we find a negative 
effect of filtering on power, though not as pronounced as in Table 2. As Table 

3 covered the situation of a mid-sample break, it is not surprising, given the 
asymptotic results of Table 1 that filtering has a negligible impact on power. 
According to the computations based on asymptotic local power approximation 

we should find more impact of filtering in cases like Tb = 20 and Tb = 80. 
Though the simulation results using a sample of T = 100 do not display clearly 
such filtering effects, they hold in larger samples. For instance, with T = 200 and 
Th = 40 the size corrected power was 8% higher with unfiltered series compared 
to filtered ones. With Tb = 160, using filtered series resulted in tests with 13% 
more power. These latter figures show the relevance of the qualitative results 
concerning the direction of the bias in the power function described in Section 
4.2. 

It was conjectured that the analytic asymptotic results, restricted to simple 
cases, would probably carry over to more complicated situations. We now 
consider a Monte Carlo design where the DGP is an AR(l) model, instead of 



T
ab

le
 3

 

Si
ze

 a
nd

 p
ow

er
 

pr
op

er
tie

s 
of

 t
es

ts
 f

or
 c

ha
ng

es
 

in
 p

ol
yn

om
ia

l 
tr

en
d 

fu
nc

tio
n 

an
d 

ge
ne

ra
l 

te
st

s 
fo

r 
pa

ra
m

et
ri

c 
in

st
ab

ili
ty

 
w

ith
 u

nk
no

w
n 

ch
an

ge
 

po
in

t; 
sa

m
pl

e 
si

ze
 T

 =
 1

00
 

D
G

P 
w

ith
ou

t 
se

as
on

al
 

du
m

m
ie

s 
an

d 
w

ith
 

D
G

P 
w

ith
 s

ea
so

na
l 

du
m

m
ie

s 
an

d 
w

ith
 

le
ve

l 
sh

if
t 

an
d 

T
, 

=
 5

0 
un

de
r 

al
te

rn
at

iv
e 

le
ve

l 
sh

if
t 

an
d 

T
b 

=
 5

0 
un

de
r 

al
te

rn
at

iv
e 

Q
&

(O
),

 k
 =

 0
 

Q
M

%
 

k 
= 

0 
Q

/.$
(O

),
 k

 =
 0

 
W

%
(O

), 
k 

=
 0

 
U

na
lte

re
d 

Fi
lte

re
d 

U
nf

ilt
er

ed
 

U
nf

ilt
er

ed
 

Q
&

(O
),

 
k 

=
 0

 
Fi

lte
re

d 

Si
ze

 
6 

=
 0

.5
0 

6=
 

1.
00

 
Po

w
er

 
6 

=
 0

.5
0 

s 
=

 1
.0

0 

0.
05

0 
0.

08
8 

0.
05

2 
0.

05
0 

0.
09

0 
0.

05
 1 

0.
09

0 
0.

05
1 

0.
04

7 
0.

08
9 

0.
60

2 
0.

70
1 

0.
60

9 
0.

60
4 

0.
70

4 
0.

99
2 

0.
98

6 
0.

99
4 

0.
99

5 
0.

99
6 

Q
&
(
O
)
 

Q
D:

(O
) 

m
(o

) 
Q

D
r (

0)
 

Q
DT

 (0
) 

U
nf

ilt
er

ed
 

Fi
lte

re
d 

U
nf

ilt
er

ed
 

U
nf

ilt
er

ed
 

Fi
lte

re
d 

k=
l 

k=
2 

k=
l 

k=
2 

k=
l 

k=
2 

k=
l 

k=
2 

k=
 

12
 

k=
l 

k=
2 

Si
ze

 
d 

=
 0

.5
0 

s 
=

 1
.0

0 
Po

w
er

 
s 

=
 0

.5
0 

s=
 

1.
00

 

0.
04

9 
0.

04
8 

0.
07

9 
0.

06
5 

0.
04

7 
0.

04
8 

0.
04

8 
0.

04
7 

0.
03

4 
0.

07
7 

0.
07

0 
0.

04
7 

0.
04

6 
0.

07
3 

0.
06

7 
0.

04
4 

0.
04

6 
0.

04
8 

0.
04

7 
0.

03
4 

0.
07

3 
0.

06
6 

0.
55

7 
0.

51
6 

0.
63

9 
0.

57
3 

0.
55

9 
0.

52
0 

0.
55

5 
0.

51
4 

0.
05

9 
0.

64
1 

0.
57

6 
0.

98
5 

0.
96

3 
0.

99
3 

0.
96

4 
0.

98
7 

0.
96

2 
0.

98
6 

0.
96

5 
0.

01
5 

0.
99

2 
0.

96
2 

su
p 

W
T

(k
 

=
 

1)
 

su
p 

LR
,(k

 
=

 
1)

 
su

p 
W

i’(
k 

=
 

1)
 

su
p 

LR
;(k

 
=

 
1)

 
su

p 
W

r(
k 

=
 

I)
 

su
p 

LR
T

(k
 

=
 

1)
 

U
nf

ilt
er

d 
Fi

lte
re

d 
U

nf
ilt

er
ed

 
Fi

lte
re

d 
U

nf
ilt

er
ed

 
U

nf
ilt

er
ed

 
Fi

lte
re

d 
Fi

lte
re

d 

Si
ze

 
6 

=
 0

.5
0 

6 
=

 1
.0

0 
Po

w
er

 
8 

=
 0

.5
0 

6=
1.

00
 

0.
05

0 
0.

04
8 

0.
04

7 
0.

04
4 

0.
05

1 
0.

05
2 

0.
05

6 
0.

05
5 

0.
04

8 
0.

04
8 

0.
05

3 
0.

04
9 

0.
05

0 
0.

05
3 

0.
05

9 
0.

05
7 

0.
54

1 
0.

56
1 

0.
58

2 
0.

51
1 

0.
44

1 
0.

49
 1

 
0.

39
8 

0.
50

1 
0.

88
7 

0.
81

8 
0.

91
9 

0.
92

0 
0.

81
0 

0.
88

8 
0.

78
3 

0.
84

3 

p!
 



E. Ghysels, P. PerronlJournal of Econometrics 70 (1996) 69-97 89 

O.oB 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

---, \ 

\ \ 

I I I, I I I I I I 

0 2 4 6 8 

olpho[*lOl 
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white noise, with or without a break in intercept at Tb = 50. To simplify the 
presentation, we focus exclusively on the Q&-(O) statistic with k = 1 for an AR(l) 
with M = 0.0, 0.1, 0.2, . . ,0.9. The size of the jump 6 is set equal to 1. The results 
are reported in Figs, 2a and 2b. The first covers size and reveals that filtering 
induces size distortions which diminish, relative to the unfiltered case, as c( in- 
creases towards 1. The next figure covers the difference in size-corrected power, 
unfiltered versus filtered. Here, we clearly see a remarkable and devastating effect 
on power produced by filtering data when values of c1 are in the range of 0.4 and 
0.8. Indeed, up to almost 30% power is lost because of filtering. Hence, with tx = 0 
and T6 = 50, we found little effect on filtering (cf. Table 1 and Table 3). In contrast, 
with AR( 1) stationary models, we find quite strong filtering effects. Size distortions 
occur as well because of filtering, although they taper off as c1 increases. 

6. Empirical examples 

We now turn our attention to empirical examples, demonstrating the effect of 
filtering in practical applications. The examples relate to tests for unit roots 
discussed in Section 3.1. We analyze a set of monthly historical time series 
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Fig. 3a. Monthly index of industrial production, 1884 : l-l 940: 12. 

measuring economic activity before WWII. More specifically, we consider an 
index of aggregate industrial production and an index of pig iron production 
both covering the period 1884: l-1940: 12. The data are described in more detail 
in Miron and Romer (1990). This monthly data set covers a long span which is 
particularly desirable when testing for unit roots (see Perron, 1991a). From the 
monthly series, we also constructed quarterly indices covering 1884: Ql- 
1939 : 44. Figs. 3a and 3b display plots of the monthly series. 

Table 4 contains empirical results for the quarterly and monthly IP series. For 
each series, three regressions were applied, namely two involving unadjusted 
data, once with and once without seasonal dummies. 

In the sequential procedure to select the autoregressive order, we considered 
k max = 12 for the monthly data and k,,, = 10 for the quarterly series. In Table 4, 
we present tests for the unit root hypothesis using models 2 and 3, denoted t,*(2) 
and t,*(3) respectively.” Perhaps the most straightforward example in Table 4 is 

“It has been assumed that the data generating process had not unit roots at some of the seasonal 

frequencies. A comment is in order, though, before turning to the empirical results. For the IP series, 

there are reasons to believe that there might very well be unit roots at seasonal frequencies. Although 

we will not provide a formal proof here, we can extend the arguments in Ghysels et al. (1994) to show 

that Dickey-Fuller type tests can still be used to test for a unit root at the zero frequency to the 

extent that the autoregression is appropriately augmented. 
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Fig. 3b. Monthly index of pig iron production, 1884: l-1940: 12. 

Industrial Production sampled at a monthly frequency as all model and data 
configurations agree on a rejection of the unit root hypothesis. The results with 
the other data sets and regression specifications are ambiguous and hence more 
interesting for our purpose. 

Let us first discuss the quarterly IP series. While there is agreement among the 
results for model 3, there is a striking difference between using SA versus NSA 
series with the test statistic t,*(2). With NSA data and seasonal dummies, there is 
strong evidence against the unit root null hypothesis. With seasonally adjusted 
series, one cannot reject the null. We know from the theoretical discussions and 
the simulations that filtering entails a loss in power, to which nonrejection of the 
null with filtered series can be attributed. Yet, also using NSA data with 
a correction via an AR argumentation instead of using seasonal dummies also 
favors the null. It is important to note, however, that the AR augmentation 
involves ten lags, hence more coefficients than in the regression with seasonal 
dummies and its four-lag AR expansion. This comparison of both tests using 
NSA data tells us that the seasonal dummy scenario is probably the most 
striking. With quarterly Pig Iron production, we also find disagreement among 
the tests, this time for both models. Now, the scenario involving NSA data and 
the use of AR augmentations yields rejection. Note, however, that the AR 
expansions are more parsimonious and clearly should lead to the most powerful 
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Table 4 

Empirical results Historical time series evidence on unit roots against breaking trend alternatives 

using t:(2) and t:(3) test statistics 

Seasonally unadjusted (NSA) versus adjusted (SA) data 

Model NSAjSA Seas. dummies k mpx k Th p-value 

Quarterly index of industrial production 1884: I - 1940: 4 

2 NSA Yes 10 4 1931:3 0.00 

NSA No IO IO 1931:3 0.38 

SA No IO 8 1931:3 0.30 

3 NSA Yes IO I 1925:2 0.35 

NSA No IO 7 1925:2 0.36 

SA No IO 7 1925:3 0.41 

Quarterly index 01 pig iron production 1884: I - 1940: 4 

2 NSA Yes 10 3 1920:4 0.21 

NSA No 10 3 1930: 1 0.02 

SA No 10 8 1930: 2 0.16 

3 NSA Yes IO 9 1914: I 0.41 

NSA No IO 3 1914: 3 0.03 

SA No IO 8 1914:2 0.74 

Monthly index of industrial production 1884: I 1940: I2 

2 NSA Yes 12 

NSA No 12 

SA No 12 

3 NSA Yes I2 

NSA No 12 

SA No 12 

12 193l:ll 0.00 

12 193l:ll 0.00 

II 1931: I1 0.00 

I2 1925:5 0.01 

I2 1925:5 0.02 

I1 1925: 11 0.00 

Monthly index qf piy iron production 1884: I - 1940: 12 

2 NSA Yes 12 12 1930:7 0.13 

NSA No 12 I2 1930:4 0.08 

SA No 12 II 1930: 7 0.06 

3 NSA Yes 12 12 1914:6 0.15 

NSA No I2 I2 1914:8 0.1 I 

SA No I2 II 1914:6 0.09 

T, represents the estimated break point, k,,, is the maximal lag in the selection procedure, and k is 
the selected order of the autoregression. 

tests. This empirical example, like the former one, underlines the conclusions 
obtained from the theoretical developments and simulations. Indeed, filtering 
with X-l 1 has a strong effect in this case on the power of the tests, particularly 
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when they also involve long AR expansions. The last remaining case is that of 
monthly Pig Iron series. Here, there do not appear to be significant differences 
between the tests. 

Appendix 

In this appendix, we derive the asymptotic distribution of T(oi’ - 1). Let 
j,’ be the residuals from a projection of ys on{ 1, t, DT:} (t = 1, . . , T ). Note 
first that, combining (4.4) and (4.Q we have 

yt/ = z{ if t < Tb - m, 

= y(t - T,,) + Z,! if t 2 Th - m, 

=%.f+Z: if Tb - m < t < Th + m. 

Straightforward algebra yields (see Perron and Vogelsang, 1993) 

jq = y;’ - PJ - (t - f)c,/ 

jtf = y; - Yf -(t - r,c; 
where Ps = T-‘CTzly/, t = 

cl and c,” are defined by 
Y/ = (y{, . . . ,y{) and 

_ i* 

L : T-t T-Th-I* 

t f*c/ 43 t d T,,, 

- (t - Tb - f*)c,f, t > Tb, (A.1) 

T-11 T= 1 t, f* = T ’ cITzelTh t. The variables 

[&4/]‘= (W’W))’ W’(Y’- Ps), where 

The expressions for the level of ys are somewhat cumbersome. Tedious algebra 
[using, in particular, the fact that the detrended variables are invariant to 1 
except for values of t in the interval (Tb - m < r < Th + m)] yields 

j$ = z,/ - zr - (t - T)Cj + i*c4, t < Tb - m, 

j,I = z,/ - zs - (t - F)(.j + i*c4 + jym.,, Tb - m -c t < T,,, 

jq = Z,l - zf - (t - f) c~-((~-T~-I*)c~+Yx~.~, T,<t< Tb+m: 

j/ = Z: - z’ - (r - c)c3 - (t - T,, - t*)c4, t 2 Tb + m, 

(A.3 
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where Zf = T -lx,‘= IZ[, and the variables cg and cq are defined by 
[c,, cd]’ = (W’W)-’ W’(Z’ - Z’), where Z’ = (Z{, . . . ,Z{). Using (A.2), the 
first-differences are 

j$ -.L = vt - c3, t < Tb - m, 

= ‘It - c3 + YXrn,l, t=Tb-m+l, 

= vlt - c3 + a!,,, - Xm.1-11, Tb - m + 1 < t d Tb, 

= 4 - (c3 + 4 + Ych.t -Xm,t-11, T,<t<T,+‘T (A.3) 

=%-(c3+C4)-YXm,*-l? t=Tb+m+l, 

= ?t - k3 + d t>Tb+Wl+l. 

Consider the numerator of T(kf - 1). We have 

T-’ i j$(jf - jLl) = T -’ i (ZL1 - zf - (t - 1 - f)c& 
t=2 r=2 

+ T-‘&tSc4q,) + T-’ 
2 

.$,(I - 1 - Tb)‘Wh 
b 

T,+m-1 

+T-’ 1 YXrn,l- 1% + O,(l)> (A.4) 
T,-m+l 

where the terms subsumed under op( 1) correspond to some elements associated 
with the observations at t = Tb - m + 1 and t = Tb + m + 1. We note the 
following asymptotic results: T- ’ t* l/2, T - ‘F* e- (1 - A)2/2, and under the 

null hypothesis of a unit root, T -1/2Zf*o,JAw(r)dr, T1j2c3 j - o,,ti3/gB, 
and T1’2~4 * - a,t,b4/ge with ge, ti3, $., as defined in Perron (1989, Thm. 2), 
and a,2 = limT+, T-‘E[S$,,,] with ST,,, = CT= lqt. Consider the last term in 
(A.4), we have 

T,+m-I T,e + m 

T-l 1 um,t-ltlr= T-’ c ~~rn,r~r+l 
T,-m+l T,-mt2 

Tb + m 

=T-' c i: (t+ 1 -l‘bT,+,-~%+l (A.3 

T,-m+2 i=T.-mfl 

Zm-1 , 

=T-’ c cjv m+i+lY]T,-m+i+l’ 
j=l i-0 

The whole expression converges to zero as T + co. Hence, the limit of (A.4) is 
given by the limit of the first three terms and using results in Perron and 
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Vogelsang (1993), we have 

where 6 = (cJ,’ - $)/20, with s,’ = lim,,, T~‘~t’= 1E($). Also wB(r) is the 
residual from a continuous-time projection of the Wiener process W(r) on the 
function {l, r, dr*(A)} with dr*(L) = r - 1 if r > L and 0 otherwise. Similar 
arguments hold for the denominator of T(B’ - 1) and we have 
T-2C,‘=2y”{_1 *aiKB/g, = otftws(r)2dr. 

Proofof(4.16). We first note that 

y;’ = v(L)yr = v(L)e,, t < T,, - m, 

= (6/J?) + v(L)e,, t > Th + m, 

= (d/fi)$,., + v(L)e,, Th - m < t d Tb + m, 

where $,,,., = C:=Tb-m+,~8Tb+I -,, and we note at the outset the limiting result 

[TV] T, + VI [ Tr] - Th + ,,t 

$m.[~~l= 1 V,+Imi=Tml C Tv([m+l -i]/T) 
I=1 i=l 

=S 1 v(k - s)ds as T -+ co, 
0 

(A.7) 

for i, - K < r < iL + K. Using this result and the fact that T-1i2~~l]l v(L)e, = 

o,W(r) [since v(l) = l] and 

we obtain 

=sa,W(r) + c3:~~~~k~v( - s)ds]dj 

+ 6[r - E. - K], r > i, + ti. (A.8) 
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Using (AX), the numerator of Q&O) has the following limit: 

2 

+ j cr,[w(r)-rW(l)J +(I dj 
2.+x 

- 6(A - x)(1 -r) ‘dr. (A.91 

Note that the denominator of Q&(O) has the foliowing limit: 

82-45;. (A.lO) 

The result (4.16) follows after some manipulations combining (A.9) and (A.lO) 
and considering again the case where 6 is large. 
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